Tag Archives: nose

Python Testing Cookbook Review

Python Testing CookbookPython Testing Cookbook, by Greg L Turnquist (@gregturn), goes far beyond Unit Testing, but overall it’s a mixed bag. Here’s a breakdown for each chapter (disclaimer: I received a free eBook from Packt for review):

  1. Basic introduction to testing with unittest, which is great if you’re just starting with Python and testing.
  2. Good coverage of nose. I was pleasantly surprised at how easy it is to write nose plugins.
  3. Deep coverage of using doctest and writing testable docstrings. You can download a free PDF of Chapter 3 here.
  4. BDD with a cool nose plugin, and how to use mock or mockito for testing with mock objects. I wish the author had expressed an opinion in favor of either mock or mockito, but he didn’t, so I will: use Fudge. Chapter 4 also covers the Lettuce DSL, which I think is pretty neat, but since every step requires writing a function handler, I’m not convinced it’s actually easier or better than writing doctests or unit tests.
  5. Acceptance testing with Pyccuracy and Robot Framework, which both give you a way to use Selenium from Python. I thought the DSLs used seemed too “magic”, but I that’s probably because I didn’t know the command words, and they weren’t highlighted or adequately explained.
  6. How to install and use Jenkins and TeamCity, and how to display XML reports produced using NoseXUnit. This is a very useful chapter for anyone thinking about or setting up continuous integration.
  7. This chapter is supposed to be about test coverage, and does introduce coverage, but the examples get needlessly complicated. Previous chapters used a simple shopping cart example, but this chapter uses network events, which really distracts from the tests. The author also writes unittests that just print the results intead of actually testing results with assertions.
  8. More network event complexity while trying to demonstrate smoke testing and load testing. This chapter would have made a lot more sense in a book about network programming and how to test network events. Pyro is used with very little explanation, and MySQL and SQLlite are brought in too, increasing the complexity even more.
  9. This chapter is filled with useful advice, but there’s no actual code examples. Instead, the advice is shoehorned into the cookbook format, which I felt detracted from the otherwise great content.

Throughout the book, the author presents a kind of “main script” that he updates at the end of many of the chapters. However, the script also contains stub functions that are never touched and barely explained, making their existance completely unnecessary. There’s also far too many import *, which can make it difficult to understand the code. But I did learn enough new things that I think Python Testing Cookbook is worth buying and reading. Leaving out Chapters 7 and 8, I think the book is a great resource if you’re just getting started with testing, you want to do continuous integration, and/or you want to get non-programmers involved in the testing process. There’s also a blog about the book, which has links to other reviews.

Test Driven Development in Python

One of my favorite aspects of Python is that it makes practicing TDD very easy. What makes it so frictionless is the doctest module. It allows you to write a test at the same time you define a function. No setup, no boilerplate, just write a function call and the expected output in the docstring. Here’s a quick example of a fibonacci function.

def fib(n):
        '''Return the nth fibonacci number.
        >>> fib(0)
        0
        >>> fib(1)
        1
        >>> fib(2)
        1
        >>> fib(3)
        2
        >>> fib(4)
        3
        '''
        if n == 0:
                return 0
        elif n == 1:
                return 1
        else:
                return fib(n - 1) + fib(n - 2)

If you want to run your doctests, just add the following three lines to the bottom of your module.

if __name__ == '__main__':
        import doctest
        doctest.testmod()

Now you can run your module to run the doctests, like python fib.py.

So how well does this fit in with the TDD philosophy? Here’s the basic TDD practices.

  1. Think about what you want to test
  2. Write a small test
  3. Write just enough code to fail the test
  4. Run the test and watch it fail
  5. Write just enough code to pass the test
  6. Run the test and watch it pass (if it fails, go back to step 4)
  7. Go back to step 1 and repeat until done

And now a step-by-step breakdown of how to do this with doctests, in excruciating detail.

1. Define a new empty method

def fib(n):
'''Return the nth fibonacci number.'''
pass

if __name__ == '__main__':
import doctest
doctest.testmod()

2. Write a doctest

def fib(n):
        '''Return the nth fibonacci number.
        >>> fib(0)
        0
        '''
        pass

3. Run the module and watch the doctest fail

python fib.py
**********************************************************************
File "fib1.py", line 3, in __main__.fib
Failed example:
    fib(0)
Expected:
    0
Got nothing
**********************************************************************
1 items had failures:
   1 of   1 in __main__.fib
***Test Failed*** 1 failures.

4. Write just enough code to pass the failing doctest

def fib(n):
        '''Return the nth fibonacci number.
        >>> fib(0)
        0
        '''
        return 0

5. Run the module and watch the doctest pass

python fib.py

6. Go back to step 2 and repeat

Now you can start filling in the rest of function, one test at time. In practice, you may not write code exactly like this, but the point is that doctests provide a really easy way to test your code as you write it.

Unit Tests

Ok, so doctests are great for simple tests. But what if your tests need to be a bit more complex? Maybe you need some external data, or mock objects. In that case, you’ll be better off with more traditional unit tests. But first, take a little time to see if you can decompose your code into a set of smaller functions that can be tested individually. I find that code that is easier to test is also easier to understand.

Running Tests

For running my tests, I use nose. I have a tests/ directory with a simple configuration file, nose.cfg

[nosetests]
verbosity=3
with-doctest=1

Then in my Makefile, I add a test command so I can run make test.

test:
        @nosetests --config=tests/nose.cfg tests PACKAGE1 PACKAGE2

PACKAGE1 and PACKAGE2 are optional paths to your code. They could point to unit test packages and/or production code containing doctests.

And finally, if you’re looking for a continuous integration server, try Buildbot.